

Engineered for Movement. Built for Longevity.

Hebei Guchen Engineering Rubber Co., Ltd.

COMPANY PROFILE

Guchen Bridge Systems is a premier manufacturer and Leading Global Supplier of Pot Bearings. Operating from our advanced production facilities in Hebei, China, we engineer durability and reliability into every product, ensuring the safety and longevity of critical infrastructure projects worldwide.

For over 15 years, we have combined precision engineering with rigorous quality control to deliver solutions that stand up to the most demanding conditions—from heavy traff c loads and extreme weather to seismic events. Our commitment is not just to meet expectations but to exceed them, providing unparalleled value and support at every stage of your project.

Why Partner With Guchen?

Engineering Excellence: Our in-house team of experienced engineers utilizes state-of-the-art design and finite element analysis (FEA) to create joints that perform flawlessly under specified movement ranges and dynamic loads. We offer custom-designed solutions tailored to your project's unique requirements.

Uncompromising Quality: From the selection of high-grade, corrosion-resistant steels and advanced, weather-proof elastomers to our meticulous manufacturing processes, every step is controlled to ensure superior product life. Our products comply with major international standards, including EN, AASHTO, and DIN.

Proven Global Performance: Our Pot Bearings have been specified and installed for over 30 projects worldwide, encompassing a wide range of structures including Various Types of High-Grade Highway Bridges and Other Large & Medium-Span Bridges. This global experience equips us with a deep understanding of the diverse challenges faced by engineers and contractors.

Total Project Support: We are more than just a supplier; we are your partner. We provide comprehensive technical documentation, detailed installation guidance, and responsive aftersales support to ensure seamless integration and optimal performance of our systems.

Our Commitment

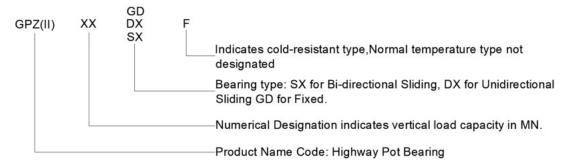
At Guchen Bridge Systems, our mission is to empower engineers and builders with reliable, innovative, and cost-effective spherical bearings that ensure the structural integrity and safety of bridges for decades to come.

Let us help you build smarter, safer, and longer-lasting.

CERTIFICATIONS&COMPLIANCE

GPZ(II) Pot Bearing

I. Bearing Performance


The GPZ(II) highway bridge pot rubber bearing is designed and manufactured in compliance with the recently issued PRC Ministry of Communications industry standard JT391. This product series features rational structure, high load capacity, minimal deformation, large horizontal displacement, and flexible rotation.

II. Applicable Temperature Range:

A. Normal temperature type: Suitable for -25°C to +60°C

B. Cold-resistant type: Suitable for -40°C to +60°C, designated as F

III. Product Code

IV. Technical Performance:

- 1. The actual bearing capacity is 110% of the designed capacity, allowing for 10% overload.
- 2. Within -25°C to +60°C, the minimum design friction coeff cient is 0.03; within -40°C to +60°C, the minimum design friction coeff cient is 0.06.
- 3. The maximum design rotation angle of the bearing is 0.02 rad.

V. Material Properties

- 1. Rubber
- 1. Rubber

The rubber plates for normal temperature type GPZ(II) series pot rubber bearings are made from chloroprene rubber, natural rubber, or EPDM. Normal temperature type bearings use chloroprene rubber, while cold-resistant type bearings use natural rubber or EPDM. Their physical and mechanical properties are shown in the table below.

/p=	Item	Compound							
\vdash	iteiii	Chloroprene Rubber	Natural Rubber	EPDM Rubber					
	Shore A Hardness	60 ± 3	60 ± 3	60 ± 3					
	Tensile Strength (MPa), ≥	17.0	18.0	15.2					
	Elongation at Break (%), ≥	400	450	350					
	Brittleness Temperature (°C), ≤	-40	- 55	- 60					
Constant	Constant Compression Permanent Deformation (Room Temp x 24h)		≤25	≤25					
Ozone Re	Ozone Resistance (25pphm, 50pphm), 20% Elongation, 40℃ x 96h								
Heat	Test Conditions (℃ x h)	100×70	70 × 168	100 × 70					
Air	Tensile Strength Reduction Rate (%), <	15	15	15					
Aging	Elongation at Break Reduction Rate (%), <	40	20	40					
Test	Change in Shore A Hardness	< +15	± 10	< + 10					

2. PTFE Plate

The polytetrafluoroethylene plates used in pot bearings are pure molded sheets, not machined sheets. The raw material for processing shall not contain reprocessed material or any fillers. The physical and mechanical properties of the PTFE plates must comply with the requirements in the table below:

Item	Unit	Specification
Relative Density (Specific Gravity)	kg/m³	2130~2200
Tensile Strength	Мра	≥30
Elongation at Break	%	≥300

3. Stainless Steel Plate

The stainless steel sliding plates for bi-directional and unidirectional movable bearings, and the lateral sliding strips for unidirectional movable bearings, are made of precision-rolled stainless steel plates of grades OCr19Ni13Mo3, OCr17Ni12Mo2, or 1Cr18Ni9Ti. Their chemical composition and mechanical properties comply with the relevant provisions of GB/T 3280. The plate surface meets the No.4 finish processing requirements, with a surface hardness of HV150–HV200. For bearings in coastal bridges and sea-crossing bridges, stainless steel sliding plates of grades OCr19Ni13Mo3 or OCr17Ni12Mo2 are preferred.

When the stainless steel plate length is \leq 1500mm, the plate thickness is 2mm; when the length is >1500mm, the plate thickness is 3mm.

4. 5201 Silicone Grease

PTFE plates are lubricated with 5201-2 silicone grease. This ensures the grease does not dry out within the service temperature range, is non-harmful to sliding surfaces, and possesses good ozone resistance, corrosion resistance, and waterproof performance. Its performance indicators comply with the relevant provisions of HG/T 2502.

5. Steel Components

A. If steel plates are used for bearing top plates, upper seat plates, intermediate steel plates, etc., the technical requirements for the steel plates shall comply with the relevant provisions of GB 700.

B. If cast steel parts are used for bearing top plates, upper seat plates, intermediate steel plates, and steel pots, their chemical composition, mechanical properties after heat treatment, and

impact toughness shall comply with the relevant provisions for ZG230-450 or ZG270-500 in GB 11352.

VI. Selection of Three Types in GPZ(II) Series Pot Rubber Bearings

The GPZ(II) series pot rubber bearings are divided into Fixed Bearings (GD), Unidirectional Sliding Bearings (DX), and Bi-directional Sliding Bearings (SX). Each of these three bearing types has its own characteristics. Fixed bearings restrict horizontal displacement of the girder in any direction while allowing vertical movement at that location. Bi-directional sliding bearings can accommodate displacement in any direction, whereas unidirectional sliding bearings only accommodate horizontal displacement parallel to the two guide blocks; horizontal displacement in other directions is restricted by the guide blocks.

The concept of the fixed bearing is straightforward, and its selection is not problematic. The issue lies in how to choose the sliding bearing. The basis for selection is the magnitude of the transverse horizontal force. After calculation, if the superstructure, under the action of the bearing's frictional resistance, can ensure a sufficient sliding stability factor across the bridge's transverse direction, it is advisable to select a bi-directional sliding bearing. When the above condition cannot be met, selecting a unidirectional sliding bearing can also resolve the transverse sliding issue of the bridge superstructure. The various loads listed in the Highway Bridge and Culvert Design Specifications include few items that impose transverse horizontal forces on the bridge superstructure, and these are often small in magnitude. Therefore, bi-directional sliding bearings can be selected for most sliding applications. When the bridge is located on a horizontal curve, where vehicle centrifugal force is significant or the transverse forces on the bridge are substantial, the resulting horizontal force may cause the transverse sliding stability of the superstructure to be insufficient; in this case, unidirectional sliding bearings must be selected.

In the GPZ II series, each grade of pot rubber bearing specifies its minimum load capacity. One reason is that the friction coeff cient between the PTFE plate and the stainless steel plate is inversely proportional to the applied normal force; meaning, the greater the normal force, the smaller the resulting friction coeff cient, and the smaller the normal force, the greater the resulting friction coeff cient. A smaller friction coeff cient is beneficial for the design of the bridge substructure. Secondly, consideration is given to the fact that for large and medium-span bridges, the proportion of dead load relative to the design load is significant, with dead load potentially reaching 70-80% of the total load. To prevent users from arbitrarily increasing the safety factor and selecting an excessively large bearing, the minimum bearing capacity is provided. Conversely, from a safety usage perspective, the maximum load capacity is also specified.

VII. Installation Method for GPZ Series (II) Type Bridge Rubber Bearings

1. Installation Preparation

It is recommended to set a support pad stone beneath the pot bearing. Bolt hole positions should be reserved according to the spacing of the anchor bolts on the bearing base plate and the specification of the base studs. The surface of the support pad stone must be level. During construction, the elevation of the top surface of the support pad stone must account for the

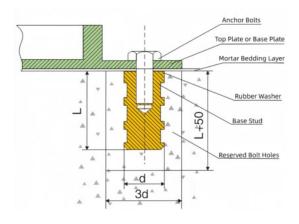
thickness of the epoxy mortar layer under the bearing base plate. The area of the pad stone outside the bearing base plate should be sloped to prevent water accumulation. The bearing should not be unpacked until immediately before installation, and all components and the packing list should be checked.

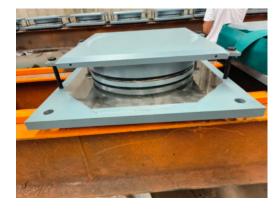
The bearing must not be disassembled arbitrarily before installation.

2. Installation Steps and Precautions

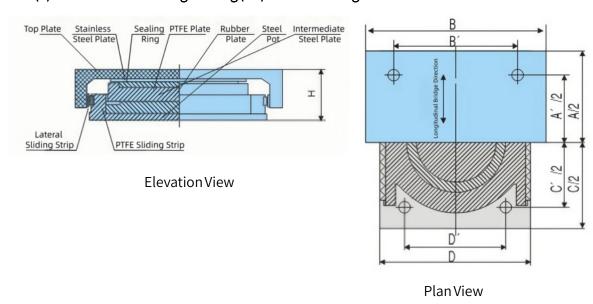
Mark the centerline at the designed bearing position. Also, mark the centerlines on the top and bottom plates of the bearing. Thread the anchor bolts through the bolt holes in the bottom plate (or top plate) and screw them into the base studs. Place rubber washers with a diameter slightly larger than that of the base studs between the bottom plate and the base studs.

After the bearing is positioned, aligned, and leveled, grout the anchor bolt holes and the cushion layer under the bearing base plate with epoxy mortar or high-grade mortar. Once the mortar has hardened, remove the leveling shims and fill the spaces they occupied with epoxy mortar. Ensure the epoxy mortar is compactly filled.

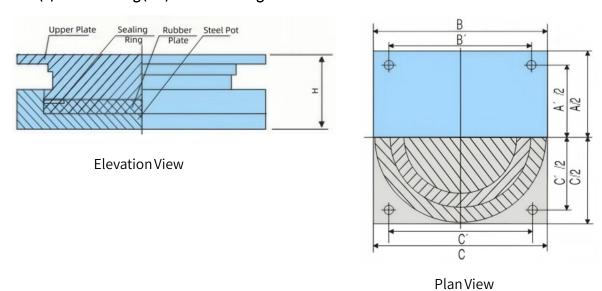

When the bearing connection is by welding, embed steel plates at the corresponding positions on the top and bottom plates of the bearing. After the bearing is positioned, weld using a symmetrical intermittent method.


During welding, take care to prevent excessive heat from affecting the rubber plate and PTFE plate. After welding, apply anti-rust treatment to the welded areas.

If pot bearings are used for T-beams, temporary support measures must be implemented at the beam ends during construction and installation to prevent the T-beams from tilting sideways. The temporary supports can only be removed after the diaphragm plates between the two T-beams are welded into an integral structure.

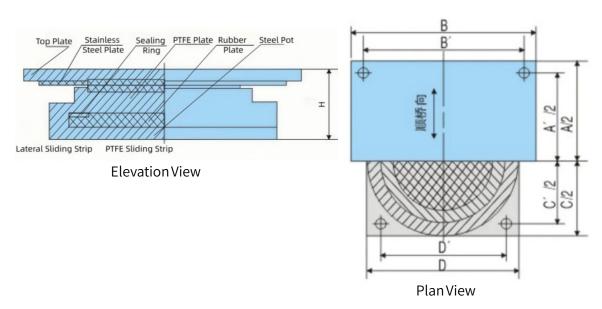

For movable bearings, after unpacking, protect the PTFE plate and the stainless steel sliding plate to prevent scratching and the adhesion of dirt onto their surfaces. Also, check whether the 5201-2 silicone grease is fully applied.

The centerline of the bearing should coincide with or be parallel to the centerline of the main girder. When installing unidirectional movable bearings, the upper and lower guide blocks must remain parallel, with a cross angle not exceeding 5°. During the system transformation of continuous girder bridges, such as when cutting temporary anchorage devices, thermal insulation measures must be taken to avoid damaging the rubber plate and PTFE plate.


${\sf GPZ(II)}\, Unidirectional\, Sliding\, Bearing\, (DX)\, Structural\, Diagram$

GPZ(II) Series Pot Rubber Bearings - Main Dimensions Table for Unidirectional Sliding Bearing (DX) Type

Specification	Longitudinal	Transverse		Main Dimer	nsion	s (mr	n)						-1	Embedded	Bolt	
(MN)	Displacement (mm)	Displacement (mm)	А	A.	В	B'	C(D)	C.	D.	Н	W	eight (K	G)	Base Stud (d×L)	Weight (KG)	
GPZ()0.8DX	±50 ± 100 ± 150	±3	320 420 520	280 380 480	315	220	265	230	180	75	34.2	38.8	43.4	Φ40×250		
GPZ(II)1.0DX	±50 ± 100 ± 150	±3	340 440 540	300 400 500	340	245	290	250	200	80	42.6	47.8	53.1	Φ40×250		
GPZ()1.25DX	±50 ± 100 ± 150	±3	380 460 560	320 420 520	370	275	320	280	230	85	52.5	58.3	640	Φ40×250	10.0	
GPZ(II)1.5DX	±50 ± 100 ± 150	±3	380 480 580	340 440 540	410	300	350	310	260	90	66.9	73.9	80.9	Φ40×250	19.9	
GPZ(II)2DX	±50 ± 100 ± 150	±3	420 520 620	380 480 580	460	350	400	360	310	100	96.0	104.9	113.8	Φ40×250		
GPZ()2.5DX	±50 ± 100 ± 150	±3	450 560 660	420 520 620	505	395	445	405	355	105	122.3	132.3	142.4	Φ40×250		
GPZ(II)3DX	±50 ± 100 ± 150	±3	485 585 685	435 535 635	565	425	485	435	370	110	157.3	169.6	182.1	Φ40×250		
GPZ(II)3.5DX	± 100 ± 150 ± 200	±3	620 720 820	570 670 770	600	460	520	470	400	115	202.6	216.7	230.8	Φ40×250	20	
GPZ()4DX	±100 ± 150 ± 200	±3	640 740 840	590 690 790	635	485	555	505	435	130	258.5	275.7	292.9	Φ40×250		
GPZ(II)5DX	± 100 ± 150 ± 200	±3	690 790 890	635 735 835	710	545	620	560	480	140	338.3	358.5	378.7	Φ50×300	T	
GPZ(II)8DX	± 100 ± 150 ± 200	±3	740 840 940	680 780 880	770	600	680	620	540	150	423.7	446.2	468.7	Φ50×300	37.4	
GPZ(II)7DX	± 100 ± 150 ± 200	±3	780 880 980	720 820 920	820	650	730	670	590	160	516.7	542.5	568.4	Φ50×300		
GPZ()8DX	±100 ± 150 ± 200	±3	810 910 1010	740 840 940	890	690	780	710	620	170	634.0	664.7	695.5	Φ60×300		
GPZ(II)9DX	±100 ± 150 ± 200	±3	850 950 1050	780 880 980	935	725	825	755	665	180	744.9	778.9	813.0	Φ60×300	54.2	
GPZ(II)10DX	± 150 ± 200 ± 250	±3	980 1080 1180	910 1010 1110	985	770	875	800	715	190	907.4	944.9	982.3	Φ60×300		
GPZ(II)12.5DX	±150 ± 200 ± 250	±3	1060 1160 1260	980 1080 1180	1100	860	970	890	780	205	1205.7	1251.4	1297.1	Φ70×350	86.1	
GPZ(II)15DX	± 150 ± 200 ± 250	±3	1130 1230 1330	1050 1150 1250	1190	950	1060	980	870	220	1513.7	1565.9	16182	Φ70×350		
GPZ()17.5DX	± 150 ± 200 ± 250	±3	1190 1290 1390	1105 1205 1305	1295	1030	1145	1060	935	235	1887.6	1949.1	2010.5	Φ70×350		
GPZ(II)20DX	± 150 ± 200 ± 250	±3	1250 1350 1450	1155 1355 1355	1375	1100	1225	1130	1000	250	2263.9	2332.1	24002	Φ80×350	1100	
GPZ(II)22.5DX	± 150 ± 200 ± 250	±3	1310 1410 1510	1220 1320 1420	1450	1180	1300	1210	1080	260	2620.3	2694.2	2768.1	Φ80×350	112.9	
GPZ(II)25DX	± 150 ± 200 ± 250	±3	1370 1460 1560	1270 1360 1460	1540	1240	1370	1270	1120	270	3058.8	3134.3	32292	Φ90×400		
GPZ(II)27.5DX	± 150 ± 200 ± 250	±3	1440 1510 1610	1340 1410 1510	1510	1310	1440	1340	1190	280	3476.4	3539.8	3451.7	Φ90×400	163.5	
GPZ(II)30DX	±150 ± 200 ± 250	±3	1500 1550 1660	1400 1460 1560	1670	1370	1500	1400	1250	290	3903.9	3975.0	40727	Φ90×400		
GPZ()32.5DX	±200 ± 250 ± 300	±3	1610 1710 1810	1500 1600 1700	1750	1420	1560	1450	1270	300	4470.0	4577.4	46847	Φ100×400		
GPZ(II)35DX	±200 ± 250 ± 300	±3	1650 1750 1850	1540 1640 1740	1810	1480	1620	1510	1330	310	4949.3	5064.3	5179.3	Φ100×400	000.4	
GPZ(II)37.5DX	±200 ± 250 ± 300	±3	1690 1790 1890	1580 1680 1780	1890	1540	1680	1570	1370	320	5512.0	5637.2	5762.4	Φ100×400	202.4	
GPZ(II)40DX	±200 ± 250 ± 300	±3	1730 1830 1930	1620 1720 1820	1940	1590	1730	1620	1420	330	6003.4	6134.9	6266.5	Φ100×400		
GPZ(II)45DX	±200 ± 250 ± 300	±3	1840 1910 2010	1710 1780 1880	2070	1680	1840	1710	1510	345	7109.8	7214.2	7351.8	Φ110×450	275.8	
GPZ(II)50DX	±200 ± 250 ± 300	±3	1930 1990 2090	1800 1860 1960	2160	1770	1930	1800	1600	360	8124.9	8222.9	8383.5	Φ110×450		
GPZ(II)55DX	±200 ± 250 ± 300	±3	2030 2050 2180	1890 1920 2020	2280	1860	2030	1890	1680	375	9130.3	9486.8	9665.4	Φ 120 × 450		
GPZ(II)60DX	±200 ± 250 ± 300	±3	2110 2130 2230	1970 1990 2090	2360	1940	2110	1970	1760	390	10484.5	10526.4	10718.8	Φ 120 × 450	329.6	
Note: All data in the table are in millimeters unless specified with "MN" for Specification.																


$\mathsf{GPZ}(\mathsf{II})\,\mathsf{Fixed}\,\mathsf{Bearing}\,(\mathsf{GD})\,\mathsf{Structural}\,\mathsf{Diagram}$

GPZ(II) Series Pot Rubber Fixed Bearing (GD) Main Dimensions Table

. We	Embedded	Weight		n Dimensions (mm)	Mai	Specification (MN)
L) (Base Stud (d×L)	(KG)	Н	A' (B'), C' (D')	A(B), C(D)	Specification (Firt)
	Φ40 × 250	25.3	75	210	250	GPZ()0.8GD
	Φ40×250	33.7	80	235	280	GPZ()1.0GD
1	Φ40×250	44.6	85	260	310	GPZ()1.25GD
	Φ40×250	56.6	90	290	340	GPZ(II)1.5GD
	Φ40×250	78.9	95	330	390	GPZ(II)2SGD
	Φ40×250	104.4	100	370	435	GPZ()2.5GD
	Φ40×250	131.0	105	400	475	GPZ(II)3GD
1	Φ40×250	157.5	110	430	510	GPZ()3.5GD
	Φ40×250	187.3	115	460	545	GPZ(II)4GD
	Φ50 × 300	265.4	130	520	610	GPZ(II)5GD
3	Φ50×300	347.5	140	570	670	GPZ(II)6GD
	Φ50×300	428.0	150	610	720	GPZ(II)7GD
	Φ60×300	508.7	155	650	770	GPZ(II)8GD
5	Φ60×300	592.1	160	690	815	GPZ(II)9GD
	Φ60×300	697.0	170	730	860	GPZ(II)10GD
	Φ70×350	946.6	185	810	960	GPZ(II)12.5GD
8	Φ70×350	1226.9	200	890	1050	GPZ(II)15GD
	Φ70×350	1496.6	210	960	1135	GPZ(II)17.5GD
11	Φ80×350	1896.0	230	1040	1220	GPZ(II)20GD
	Φ80×350	2217.2	240	1100	1290	GPZ()22.5GD
	Ф90×400	2565.6	250	1150	1360	GPZ()25GD
16	Ф90×400	2929.8	260	1220	1430	GPZ(II)27.5GD
	Φ90×400	3295.3	270	1270	1490	GPZ(II)30GD
	Φ100×400	3708.5	280	1320	1550	GPZ(II)32.5GD
20	Φ100×400	4154.1	290	1370	1610	GPZ(II)35GD
7	Φ100×400	4609.5	300	1420	1670	GPZ(II)37.5GD
	Φ100×400	5050.2	310	1460	1720	GPZ(II)40GD
	Φ110×450	5856.3	320	1560	1830	GPZ(II)45GD
27	Φ110×450	6743.8	335	1630	1920	GPZ(II)50GD
	Φ120×450	7827.4	350	1720	2020	GPZ(II)55GD
32	Φ120×450	8817.0	365	1790	2100	GPZ(II)60GD

$\mathsf{GPZ}(\mathsf{II})\,\mathsf{Bi-directional\,Sliding\,Bearing\,(SX)}\,\mathsf{Structural\,Diagram}$

GPZ(II) Series Pot Rubber Bearings Bi-directional Sliding Bearing (SX) Main Dimensions Table

Specification	Longitudinal	Transverse	4-1-	Main Dimensions (mm) Weight (KG)								(5)	Embedded	Bolt Weight	
(MN)	Displacement (mm)	bisplacement (mm)	Α	Α'	В	B'	C(D)	CO	Н		weight (i	KG)	Base Stud (d×L)	(KG)	
GPZ()0.8SX	±50 ±100 ±150	±40	320 420 520	280 380 480	300	260	245	200	75	26.9	30.1	33.4	Φ40×250		
GPZ(II)1.0SX	±50 ±100 ±150	±40	340 440 540	300 400 500	320	280	270	225	80	33.9	37.6	41.3	Φ40×250	19.9	
GPZ()1.25SX	±50 ±100 ±150	±40	360 460 560	320 420 520	340	300	300	250	85	42.0	46.0	50.0	Φ40×250		
GPZ()1.5SX	±50 ±100 ±150	±40	380 480 580	340 440 540	360	320	330	275	90	52.5	57.0	61.5	Φ40×250		
GPZ(II)2SX	±50 ± 100 ± 150	±40	420 520 620	380 480 580	400	360	385	320	100	78.7	84.7	90.6	Φ40×250		
GPZ()2.5SX	±50 ±100 ±150	±40	460 560 660	420 520 620	440	400	425	355	105	100.1	107.0	113.8	Φ40×250	LA.	
GPZ(II)3SX	±50 ±100 ±150	±40	490 590 690	440 540 640	465	415	465	385	110	124.1	131.7	139.3	Φ40×250		
GPZ()3.5SX	±100 ±150 ±200	±40	520 720 820	570 670 770	500	450	500	415	115	159.2	168.2	177.2	Φ40×250	20	
GPZ(II)4SX	±100 ±150 ±200	±40	640 740 840	590 690 790	540	490	540	450	130	210.4	221.8	233.2	Φ40×250		
GPZ(II)5SX	± 100 ± 150 ± 200	±40	690 790 890	630 730 830	600	540	600	500	140	271.6	284.7	297.8	Φ50×300		
GPZ(II)8SX	±100 ±150 ±200	±40	740 840 940	680 780 880	655	595	655	540	150	341.7	356.5	371.3	Ф50×300	37.4	
GPZ(II)7SX	± 100 ± 150 ± 200	±40	780 880 980	720 820 920	705	640	705	580	160	423.7	441.3	458.9	Φ50×300		
GPZ(II)8SX	±100 ±150 ±200	±40	810 910 1010	735 835 935	755	680	755	630	170	512.2	532.2	552.2	Ф60×300	54.2	
GPZ(II)9SX	± 100 ± 150 ± 200	±40	850 950 1050	775875975	800	720	800	660	180	608.2	630.7	653.1	Φ60×300		
GPZ(II)10SX	±150 ±200 ±250	±40	980 1080 1180	905 1005 1105	845	765	845	700	190	736.9	762.0	787.0	Φ60×300		
GPZ()12.5SX	±150 ±200 ±250	±40	1060 1160 1260	970 1070 1170	945	855	945	780	205	983.47	1013.6	1043.9	Φ70×350		
GPZ(II)15SX	± 150 ± 200 ± 250	±40	1130 1230 1330	1040 1140 1240	1030	940	1030	860	220	1245.2	1280.5	1315.9	Φ70×350	86.1	
GPZ()17.5SX	± 150 ± 200 ± 250	±40	1190 1290 1390	1100 1200 1300	1110	1020	1100	920	235	1531.4	1572.1	1612.8	Φ70×350		
GPZ(II)20SX	±150 ±200 ±250	±40	1250 1350 1450	1150 1250 1350	1190	1090	1190	990	250	1864.8	1911.2	1957.6	Φ80×350	112.9	
GPZ(II)22.5SX	± 150 ± 200 ± 250	±40	1310 1410 1510	121013101410	1260	1160	1260	1050	260	2166.2	2217.4	2268.5	Φ80×350	112.9	
GPZ(II)25SX	±150 ±200 ±250	±40	1360 1460 1560	1250 1350 1450	1340	1230	1340	1110	270	2540.1	2597.9	2651.2	Φ90×400		
GPZ()27.5SX	± 150 ± 200 ± 250	±40	1410 1510 1510	1300 1400 1500	1410	1300	1410	1170	280	2898.8	2961.5	3019.5	Φ90×400	163.5	
GPZ(II)30SX	±150 ±200 ±250	±40	1470 1560 1660	1360 1450 1550	1470	1360	1470	1220	290	3277.3	3334.5	34032	Φ90×400		
GPZ()32.5SX	±200 ±250 ±300	±50	1610 1710 1810	1490 1590 1690	1525	1400	1525	1270	300	3714.1	3788.9	3863.8	Φ100×400		
GPZ()35SX	±200 ±250 ±300	±50	1650 1750 1850	1530 1630 1730	1585	1460	1585	1320	310	4143.9	4225.5	4307.0	Φ100×400	000.4	
GPZ()37.5SX	±200 ±250 ±300	±50	1690 1790 1890	1570 1670 1770	1645	1520	1645	1370	320	4581.9	4669.0	475621	Φ100×400	202.4	
GPZ(II)40SX	±200 ±250 ±300	±50	1730 1830 1930	161017101810	1690	1570	1690	1410	330	4993.3	5065.5	5177.7	Φ100×400		
GPZ(II)45SX	±200 ±250 ±300	±50	1810 1910 2010	1680 1780 1880	1800	1660	1800	1500	345	5870.9	5973.3	6075.8	Φ110×450		
GPZ(II)50SX	±200 ±250 ±300	±50	1890 1990 2090	1760 1860 1960	1890	1750	1890	1570	360	6751.0	6864.5	6977.9	Φ110×450	275.8	
GPZ(II)55SX	±200 ±250 ±300	±50	1990 2060 2160	1850 1920 2020	1990	1850	1990	1660	375	7832.4	7921.5	8047.2	Φ120×450		
GPZ(II)60SX	±200 ±250 ±300	±50	2070 2130 2230	1930 1990 2090	2070	1930	2070	1720	390	8823.7	8907.7	9044.9	Φ120×450	329.6	
Note: All data in	the table are in mill	imeters	unless specified	with "MN" for Spe	cification	on.							N EXE	indow	